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ABSTRACT

This paper introduces a new method based on k-Nearest Neigh-
bors Graphs (KNNG) for bringing into alignment multiple
views of the same scene acquired at two different time points.
This framework is applied to cardiac motion estimation from
tagging MRI sequences. Features acquired in each view are
collected in a high dimensional feature space and an efficient
estimator of α - Joint Entropy (αJE) is used for selecting the
optimal alignment. In order to register 4D datasets, an ana-
lytical expression of the αJE estimator was derived, enabling
a fast implementation of gradient based optimization. The
technique was tested in a set of six sequences and the results
compared with respect to manual measurements made at tag
crossing points, obtaining good accuracy and low processing
times compared to published state of the art methods.

Index Terms— Image registration, Magnetic resonance
cardiography, Motion analysis, Optimization methods, En-
tropy

1. INTRODUCTION

Tagged magnetic resonance imaging (MRI) is a well estab-
lished technique used to obtain regional information on the
left ventricle (LV) deformation [1], and thus potentially valu-
able for diagnosis of cardiovascular diseases. Basically, this
technique consists in perturbing the magnetization of the my-
ocardium in a specific spatial pattern at End-of-Diastole (ED).
These perturbations appear as dark stripes (tags) when imaged
immediately after application of the magnetic field. Since the
myocardium retains “memory” of this disturbance, tags un-
dergo the same deformation as the heart does, allowing to
track material points inside the myocardium.

Mutual information (MI) based registration methods have
been reported to be accurate for estimating cardiac motion
fields in the left ventricle (LV) [2, 3]. The main drawbacks
of previous approaches, like optical flow and tag detection
and tracking, have been reported in [2]. Registration based
method consist in applying non-rigid transformations to match
the SA and LA views of a given cardiac phase, with their
counterparts at ED. In [3] the authors propose to maximize
a weighted average of the NMIs measured in the SA and LA
views separately. This solution attempts to find a compromise

between the alignment of each view. If the metrics have their
optimum at different locations in the parameters space, the
optimization could be driven by only one term of this linear
combination or get trapped into a local maximum.

This paper introduces a similarity measure which incorpo-
rates measurements from both views simultaneously. αJE[4]
is computed from feature vectors concatenating the voxel in-
tensities provided by SA and LA views. The proposed method
estimates probability densities from kNNG [4] which allows
to extend the methodology to an arbitrary number of views
(e.g radial acquisitions). Even though this work is focused on
cardiac motion estimation, the technique can be extended to a
wide range of applications. Candidate applications are inter-
subject registration of images obtained with different imaging
modalities (e.g. T1 and T2 sequences in brain scans), regis-
tration based on features like in [5, 6] and estimation of 3D+t
deformations using measurements performed on 2D views.

The next section introduces the general method and shows
its application to cardiac motion estimation. Section 3 de-
scribes the data acquisition process and the experiments. Sec-
tion 4 describes results for the tagging MRI application among
with a short discussion. Finally, Section 5 draws conclusions
and introduce future work.

2. METHOD

2.1. Multiview registration framework

Image registration methods aim to find the transformation T :
Xf → Xm maximizing a similarity criterion between a mov-
ing image Im(Xm) and a fixed image If (Xf ). Sometimes,
the object under study is represented by more than one chan-
nel, each one providing different and complimentary infor-
mation. In such situation the scenario consists in two sets
of N fixed and moving images F = {I1

f . . . IN
f } and M =

{I1
m . . . IN

m} which can be thought of as images of vector el-
ements If and Im. The main problem with the registration of
such images is the metric computation. Similarity metrics de-
rived from information theory have been successfully applied
in medical imaging, but their computation for images of vec-
tors is problematic, since they require to estimate probability
density functions in high dimensional spaces. The estimators
presented in [4] compute αJE from measurements on graphs



Fig. 1. Transformations involved in the method. The red
square represents a point taken randomly in the fixed SA im-
age and is placed in the other images by using the transfor-
mations. All positions correspond to the same material point.

directly computed in the feature space. These estimators are
particularly suitable for estimating information theory quan-
tities in high dimensional spaces and therefore have been se-
lected in this multiview registration framework.

In the rest of the section, the general concept explained
before is realized for cardiac motion estimation from tagging
MRI sequences. In this specific case there are two fixed im-
ages and two moving images corresponding to SA and LA
views of the heart. The image If = Isa

f + iI la
f is formed by

2D vectors resulting from the concatenation of voxel inten-
sity in SA and LA views at ED. In the same way, the image
Im = Isa

m + iI la
m is formed by 2D vectors containing voxel

intensities in SA and LA views at the phase for which the
deformation is being estimated. Figure 1 shows all the trans-
formations involved in this application.

2.2. Cardiac motion estimation

The motion estimation starts registering the second phase I1

of the cardiac sequence to the first one I0, which in gen-
eral corresponds to ED. As a result, the first transformation
T0→1 is obtained and allows to compute the displacement I0

to I1 from providing the displacements from ED to the next
phase. Then, the third phase I2 is registered to I0 starting
from the parameters defining T0→1, and a new transforma-
tion T0→2 is generated. This process is repeated for the rest
of the phases I3 . . . IM in the cardiac cycle. Once all the M
phases are registered to the first one, the set of transformations

T = {T0→1 . . . T0→M} model the myocardium deformation.
The deformations undergone by the myocardium at each phase
were modeled by means of Free-Form Deformations (FFD).
This type of transformation was proposed by Rueckert et al.
[7] for detection of cancerous lesions in contrast enhanced
MR breast images, and has been succesfully applied in medi-
cal imaging applications.

2.3. Combination of views

During each iteration of the registration procedure, it is neces-
sary to measure samples of vectors φf = [Isa

f (xsa
f ) I la

f (xla
f )]

and φm = [Isa
m (xsa

m ) I la
m(xla

m)] concatenating voxel intensi-
ties provided by SA and LA for the fixed and moving images
respectively. Thus, for each point xi = xsa

i in SA in the
image coordinate system, the corresponding one in LA must
be found. The correspondence between points in SA and LA
was obtained from DICOM format files which provides fields
specifying origin and orientation of the images with respect
to the coordinate system of the scanner. The points in world
coordinates xsa

w and xla
w corresponding to xsa

i and xla
i in the

local coordinate system of the image can be obtained in the
following way:

xsa
w = osa

w + Dsa
w xsa

i (1)

xla
w = ola

w + Dla
w xla

i (2)

where Dw is the direction matrix having as columns the
direction vectors i, j and k expressed in the scanner coordi-
nate system and ow is the origin of the image in the same
reference.

If xsa
w and xsa

w are the same point, the previous equations
can be combined to obtain the transformation from SA to LA
needed to generate the feature vectors.

xla
i =

(
Dla

w

)T
Dsa

w xsa
i +

(
Dla

w

)T (
osa

w − ola
w

)
(3)

2.4. Metric estimation

Once the samples are generated, the similarity metric needs
to be computed. In this work, the αJE of feature vectors
φfm = [φfφm] in R4 was employed and estimated by using
the following estimator for a random variable X:

α̂JE(X) =
1

α− 1
log E{f(X)α−1} (4)

In Eq. 4, the expectation operator is estimated from a sample
of n observations X = {x1 . . . xn} using the arithmetic mean
over all observations. In our application, each sample φi

fm

contains two pairs of SA and LA intensities in the fixed and
the moving image domains. Using the same approach as in



[4] for estimating the probability density from a kNN graph,
the following estimator of αJE in the joint feature space can
be derived

α̂JE =
1

α− 1
log

1
nα

n∑

i=1

(
Γip

)2γ
(5)

where Γi = 1
k

∑k
p=1 ‖φi

fm− φ̂ip
fm‖ and γ = d(1−α). In

Eq. (5) φ̂ip
fm represents the p-nearest neighbor of point φi

fm, d
is the dimension of φf (φm), and ‖·‖ is the euclidean distance.

2.5. Analytical derivatives

Many optimizers need to estimate the gradient of the cost
function. The simplest approach is the use of finite differ-
ences, but this is computationally expensive for a high num-
ber of parameters. A more efficient way of calculating the
gradient is to derive an analytical expression of the metric
gradient, which is particularly important when using kNNG
estimators since a kd-tree must be calculated before the near-
est neighbor queries, which has time complexity O(n log n).
The re-computation of the whole tree for each perturbation of
the current set of parameters using finite differences would be
unrealistically expensive, because of the high dimension of
the FFD parameters space. Deriving the estimator in Equa-
tion 5 with respect to the parameter pj of the transformation,
and assuming that the graph topology does not change (i.e.
the neighbors of each point remain the same) for infinitesimal
changes, the following gradient estimator can be obtained

∂

∂pj
α̂JE =

2d
∑n

i=1(Γ
ip)2γ−1 1

k

∑k
p=1

∂
∂pj
‖φi

fm − φ̂ip
fm‖∑n

i=1(Γip)2γ

(6)
where the partial derivative regarding the transformation pa-
rameter can be expanded as

∂

∂pj
‖·‖2 =

(
(Isa

m − Îsa
m )∇Isa

m + (I la
m − Î la

m)∇I la
mJTsa→la

)
JT

‖φi
fm − φ̂ip

fm‖
(7)

In the last expression, JT = ∂T (x)
∂pj

and JTsa2la
is the Ja-

cobian of the transformation from SA to LA.

3. EXPERIMENTS

3.1. Dataset

Six tagged 4D sequences of healthy volunteers were acquired
using a GE Genesis Signa 1.5T MRI scanner using a proto-
col specifically designed for the CDTEAM national project
lead by the Pompeu Fabra University. A cine breath-hold se-
quence with a SPAMM grid tag pattern was applied, start-
ing at ED and obtaining a total amount of 30 phases along

the cardiac cycle. The image resolution for each phase was
0.78mm×0.78mm×8mm and tags were placed every 5 mm.
In the deformation analysis only the systolic phase was used,
since after that the tags vanish completely and therefore it is
not possible to track material points inside the myocardium.
The lenght of this part varies from patient to patient but is 10
phases approximately. In order to estimate deformations in
the LV only, masks were defined manually at ED. One of the
sequences was descarted because of the presence of severe
acquisition artifacts.

3.2. Evaluation

In order to compute the error of the current method for tag-
ging MRI, a set of points were defined at ED and End-of-
Systole (ES). These points were marked manually at tags cross-
ing points, since these are the only ones that can be put in
correspondence in a confident manner. The fading effect of
the magnetization field, the movement of the myocardium
through acquisition planes, and local interactions in the tis-
sue blur the image at ES and it is not possible to find the
corresponding point for each point at ED. Thus, a selection
of points was carried out to increase the accuracy in the error
estimation. For the SA view, points were marked in the LV
on planes localized just below the mitral valve, close to the
apex and in a plane between these. For the LA view, only
the central plane was used since the inter plane movement of
the heart does not allow to define points correctly. This effect
is atenuated in the central plane. An average amount of 18
points were marked for each patient.

4. RESULTS AND DISCUSSION

Figure 2 shows these errors for displacements estimated from
SA landmarks and LA landmarks. This figure shows that the
error in SA accumulated during the whole cardiac systole is
lower than 1.6 mm for almost all cases, whereas this error
increases for LA view. There are two (possibly combined)
explanations to this observation: (a) tag crossings points were
more difficult to define in LA than in SA because of differ-
ences in image quality. It was observed inter-slice movement
of tissue as well (a material point is imaged in different slices
along the cardiac cycle), which makes more difficult to track
material points. (b) The method interpolates twice in LA (in
fixed and moving images) whereas just once in SA (in moving
image). For avoiding the introduction of unrealistic intensity
values in the density estimation, one could consider to use
the intensity of the closest point for the LA view or to use
an interpolation method based on graphs analogous to partial
volume techniques used for histograms.

Figure 3 displays graphically an example of the estimated
deformation fields obtained. A visual analysis of these repre-
sentations shows that all the basic components of the cardiac
contraction are recovered (longitudinal/radial/circunferencial



(a) (b)

(c) (d)

Fig. 2. Errors between displacements assesed manually and
the estimated ones for (a) SA (b) LA and (c) SA + LA. (d)
Computation for a 64-bits Itanium II processor at 1.5 MHz.

(a) (b) (c)

Fig. 3. Arrow plots of the estimated deformation fields at the
(a) begining (b) middle and (c) end of the cardiac systole for
the sequence 1 of the dataset.

shortening and torsion). This illustrates that the unified met-
ric in 5 does effectively combine information from SA and
LA views.

Differences in computation time (as plotted in Figure 2
(d)) are related to different image sizes, image resolutions and
heart volumes in the population (since the number of points
used for estimating the metric is proportional to the size of the
region circumscribing the heart).

5. CONCLUSIONS

In this paper, a new method for multiview registration was
presented. Its application to cardiac motion estimation from
tagging MRI sequences provided accurate results over-performing
the ones reported in [3]. An analytical formulation of the

derivative for KNNG αJE estimator allows to speed up no-
tably the optimization process (compared to finite differences)
and lower the registration times to manageable values. The
extension of this framework to other clinical problems is a
topic of future research.
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