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Fig. 1: (a) The octopuses have been observed to exhibit bend propagation (for reaching) and elbow formation (for fetching).

The bend propagation is actively achieved by propagating muscle actuation, illustrated by blue color; green represents the

unactuated portion of the arm. (b) A schematic of the planar Cosserat rod model.

variables. The PMP is also used to obtain the (open-loop)

optimal control input.

The resulting two-point boundary value problem is nu-

merically solved in an iterative manner, referred to here as

the forward-backward algorithm. The forward path, or the

Cosserat dynamical equations are solved using the existing

software tool Elastica [19], [21], [22]. A custom solver is

implemented to simulate the backward path or the costate

equations. The deviation from optimality is utilized to adjust

the control in an iterative manner so as to achieve optimality.

The numerical solver is applied to three test cases related

to the reaching and the fetching movement patterns. Simula-

tion results are used to qualitatively compare with observed

wave propagations or elbow forming.

C. Paper Outline

The remainder of this paper is organized as follows:

In Sec. II, the Cosserat rod model and dynamics in the

planar case are introduced and an optimal control problem

is formulated. The solution to the optimal control problem,

including the forward-backward algorithm and the numerical

methods are described in Sec. III. Results of numerical

experiments appear in Sec. IV. The paper is concluded in

Sec. V.

II. PROBLEM FORMULATION

A. Dynamic modeling of an arm as a Cosserat rod

Let {e1, e2} denote a fixed orthonormal basis for the two-

dimensional laboratory frame. Time t ∈ R and arc-length s ∈
[0, L0], L0 being the length of the undeformed rod, represent

the two independent variables. The partial derivatives with

respect to t and s will be denoted by the subscripts (·)t and

(·)s, respectively.

The state of the rod is described by the vector-valued

function q(t, s) = (r(t, s), θ(t, s)) where r = (x, y) ∈ R2

denotes the position vector of the centerline, and the angle

θ ∈ R defines the material frame spanned by the orthonormal

pairs {a, b}, where a = cos θ e1 + sin θ e2, b = − sin θ e1 +
cos θ e2 (see Fig. 1b). The vector a is normal to the cross

section. The deformations w = (ν1, ν2, κ), stretch, shear,

and curvature, are related to the local frame {a, b} through

rs = ν1a + ν2b and θs = κ. Finally, p(t, s) = Mqt(t, s)

is used to denote the momentum variable where M is the

mass-inertia density matrix.

The Hamiltonian formulation requires specification of the

kinetic energy T and the potential energy V of the rod as

follows:

T (p) =
1
2

∫ L0

0

pTM�1p ds, V(q) =
∫ L0

0

W (w) ds

where W : w 7→ R is referred to as the stored energy

function of the rod. A quadratic stored energy function,

which leads to a linear stress-strain relationship, is used

in this work. The total energy function or the Hamiltonian

H(q, p) := T (p) + V(q) yields the Hamilton’s equations of

the rod dynamics in the classical Cosserat theory [18], [20].

The generalized state of the rod is denoted as

z(t) := (q(t, ·), p(t, ·)) ∈ Z, t ∈ [0, T ]

An appropriate choice of function space is Z =
H1([0, L0]; R3) × L2([0, L0]; R3) equipped with the appro-

priate boundary conditions. The dynamics of the Hamiltonian

control system are expressed as follows:

dz
dt

(t) = (J − R)
δH
δz

+ G(z(t))u(t) =: f(z(t), u(t)) (1)

where z(0) is the initial condition, J is the skew-symmetric

structure matrix
(

0 1
�1 0

)

, and R =
(

0 0
0 ζ1

)

is the dissipation

matrix, ζ > 0 is a damping coefficient, modeling viscoelastic

effects in the rod [19]. The term G(z(t))u(t) on the right

hand side is used to model the effect of the distributed

internal muscle forces and couples. The functions u(·) ∈ U

are called control inputs. Here U is the set of all measur-

able functions u(·) : [0, T ] → U, where U is a suitable

function space called the control space. We take this as the

L2([0, L0]; R3) space. The modeling of G is complicated and

depends on the muscle type details of the octopus. In this

paper, we make the simplifying assumption G(z(t)) ≡ ( 0
1 ).

The explicit form of the six partial differential equations

in the model (1) appears in Appendix I.

B. An optimal control problem

Both sterotypical movement patterns introduced in Sec. I

involve reaching a given target point qtarget ∈ R3. Even if

realistic muscle constraints were considered (they are ignored
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here), there would exist a large number of potential strategies

to achieve the objective. Optimal control appears to be a

natural choice to obtain a unique strategy. This is done

through formulating the following free endpoint optimal

control problem:

minimize
u

J (u) =
∫ T

0

L(z(t), u(t)) dt + Φ(z(T ))

subject to (1) and a given z(0, s)
(2)

Here the end point z(T ) = (q(T ), p(T )) is free and penalizes

the cost Φ associated with the underlying task, for example

the distance from the arm tip to the designated target point.

Note that a free endpoint problem is considered as opposed

to a fixed endpoint problem due to the ease in algorithmic

implementation as described in Sec. III-B.

The choice of the cost function is problem dependent. In

this paper, a quadratic model is assumed for the control cost

and the elastic potential energy is assumed for the state-

dependent cost

L(z, u) =
1
2
‖u‖2L2 + χ1V(q) (3)

where the weighting parameter χ1 > 0 is used to penalize

the deformation of the arm. The terminal cost is used in place

of a fixed endpoint constraint

Φ(z(T )) = χ2Φtip(q(T, L0), qtarget) (4)

where the function Φtip measures the distance between the

arm tip and the target point qtarget, and χ2 > 0 is a suitably

chosen regularization parameter.

Remark 1: Careful analysis is needed regarding the con-

trollability aspect of this infinite dimensional system. The

Lie algebra rank condition or otherwise known as the Chow-

Rashevsky theorem for finite dimensional systems [23]–[25]

typically does not hold for infinite dimensional systems, and

one needs additional assumptions, e.g. [26], [27]. Moreover,

existence of the first order Pontryagin’s Maximum Principle

(PMP) type optimality conditions in the infinite dimensional

settings is non-trivial. A few attempts have been made to

show generalized PMP conditions for infinite dimensional

systems with additional assumptions [5], [28], [29]. However,

the scope of this paper is not to address these questions,

rather to characterize optimal trajectories for a soft arm

manipulation task, in a quest to explain experimentally

observed behaviors. We will therefore proceed assuming that

the controllability and PMP optimality conditions hold.

III. OPTIMAL CONTROL SOLUTION

A. The maximum principle

The costate is denoted as ξ(t) := (µ(t), γ(t)) ∈ Z�, t ∈
[0, T ]. The control Hamiltonian function1 H : Z × U × R ×
Z� → R is defined as

H(z(t), u(t), ξ0, ξ(t)) := ξ0L(z(t), u(t))
+ 〈ξ(t), f(z(t), u(t))〉

(5)

1Notice the difference between the Hamiltonian function H in the optimal
control theory and the Hamiltonian H in the elastic rod theory.

The Hamilton’s equations in the infinite-dimensional settings

are as follows:

Proposition 3.1 (Maximum Principle [5], [28]): Let ū ∈
U be an optimal control for problem (2) and z̄(t) be the

corresponding optimal trajectory. Then, there exists a pair

(ξ̄0, ξ̄(t)) ∈ R×Z�, t ∈ [0, T ], such that (ξ̄0, ξ̄) 6≡ 0, ξ̄0 ≤ 0,

ξ̄ satisfies the differential equation

dξ̄
dt

(t) = −

(

δf
δz

)y

(z̄(t), ū(t)) ξ̄(t) − ξ̄0
δL
δz

(z̄(t), ū(t))

(6)

where (·)y denotes the adjoint operator. The pointwise max-

imization of the pre-Hamiltonian holds, i.e.

H(z̄(t), ū(t), ξ̄0, ξ̄(t)) ≥ H(z̄(t), v, ξ̄0, ξ̄(t)) (7)

for all v ∈ U and for all t ∈ [0, T ]. Moreover, z̄ and ξ̄ satisfy

Hamilton’s canonical equations

dz̄
dt

(t) =
δH
δξ

(z̄(t), ū(t), ξ̄0, ξ̄(t))

dξ̄
dt

(t) = −
δH
δz

(z̄(t), ū(t), ξ̄0, ξ̄(t))
(8)

Furthermore, the vector ξ̄(T ) satisfies the transversality con-

dition

ξ̄(T ) = −
δΦ
δz

(z̄(T )) (9)

In the remainder of this paper, we will restrict ourselves in

studying only the normal extremals, i.e. where ξ̄0 6= 0 and

can be normalized to −1. The explicit form of the Hamilton’s

equations as a set of six (forward) PDEs and six (adjoint)

PDEs appears in Appendix I.

B. Computing optimal control – the forward-backward al-

gorithm

A solution to the optimal control problem (2) necessarily

has to satisfy the PMP conditions (7), (8), and (9). This calls

for solving the resulting two point boundary value problem in

a function space. This is a challenging task even for a finite-

dimensional nonlinear problem, for which various numerical

techniques have been proposed [30]–[32].

An alternate approach is to employ an iterative algorithm

(here referred to as forward-backward algorithm) to compute

the optimal control. The idea is to start with an initial guess

of the control u(1) in the first iteration. (This guess may be

zero.) In each subsequent iteration, the control is modified

so as to achieve the maximization of the control Hamiltonian

H [33], [34].

Suppose the state, costate and control at iteration k is

denoted as z(k), ξ(k), and u(k), respectively. At k-th iteration

the steps of this algorithm are as follows:

1) Run forward path: The state equation (1) is integrated

forward in time from t = 0 to T , to obtain the state

z(k).

2) Calculate terminal condition of the costate from the

transversality condition (9).
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Fig. 2: Summary of the numerical experiments: We select four iterations for each experiment. Six time instances, including

the initial time t = 0 and the terminal time t = T , are illustrated for each iteration. The rod at the terminal time is depicted

in green while other time instances are depicted in fade-in purple. The target is represented by an orange ball. (a)-(d) The

arm is initialized with straight, undeformed configuration and is tasked to reach the target located in the first quadrant at

rtarget = (9, 9) [cm] with the tip. Simulation time is T = 0.5 s for all 20 iterations. (e)-(h) The arm is initialized with straight,

undeformed configuration and is tasked to reach the target located in the first quadrant at rtarget = (0,−2) [cm] with the

tip. Simulation time is T = 0.6 s for all 40 iterations. (i)-(l) The arm is initialized with bent, deformed configuration and is

tasked to reach the target located at rtarget = (16, 10) [cm] with the tip. Simulation time is T = 0.8 s for all 20 iterations.

3) Run backward path: The costate, or the adjoint equation

(6) is integrated backward in time from t = T to 0 to

obtain the costate ξ(k).
4) Update control: The triad (z(k), ξ(k), u(k)) will typically

not satisfy the Hamiltonian maximization criterion (7).

Therefore, the control is updated in the direction of

steepest ascent of the control Hamiltonian. Denoting the

gradient of H with respect to the control u as δH
δu

, the

control update law is expressed as

u(k+1) = u(k) + ηk
δH

δu(k)
(10)

where ηk > 0 is the learning rate at iteration k.

Then we repeat steps 1) – 4) until either of the two

convergence criteria is met: i) the absolute change in control

update becomes lower than a threshold ε; ii) the number of

iterations exceeds a predefined value.

C. Numerical solver

Both the forward and backward path equations (1), (6)

are systems of nonlinear PDEs that need to be propagated

forward (or backward) in time given initial data. For the

forward path, the specialized software Elastica [19] is used.

The software is designed for high-fidelity simulations of

three dimensional Cosserat rods. A custom numerical solver

is implemented for the backward adjoint equation.

Both forward and backward dynamics solvers use finite

difference techniques to discretize the spatial dimension.

For the backward dynamics, certain spatial discretization

operators are employed [35], [36], the details of which

appear in the Appendix II. As for the time discretization,

the forward dynamics are evolved via a position Verlet

scheme. Such a scheme is commonly used to simulate a

mechanical system where the state is decomposed into (q, p)
pair [37]. As explicit calculations show in Appendix I, the

costate ξ is decomposed into a (µ, γ) pair which can be

interpreted as velocity-position variables. Hence, the position

Verlet scheme is also used for costate dynamics to integrate

backward in time.

IV. SIMULATION RESULTS

In this section, we demonstrate the numerical results of the

optimal control on a single CyberOctopus arm of rest length

L0. In all our experiments, the intrinsic strains are chosen

so that the arm is intrinsically straight, i.e. ν� = (1, 0) and

κ� = 0. The variable diameter φ(s) = φbase(L0 − s) + φtips
models the tapering of the arm. The cross sectional area

and the second moment of area are given by A = πφ2

4 and

I = A2/4π. The effective shear modulus is given by G =
4
3 · E

2(1+Poisson’s ratio) [19], where we take the Poisson’s ratio

to be 0.5 by assuming a perfectly incompressible isotropic

material. Parameters like density, modulus of elasticity, and

physical dimensions are taken from [20], [38]. Simulation

parameters are tabulated in Table I.
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